This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.
Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics.Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media.Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory.This book will be useful for researchers and graduate students in science and engineering.
An appealing and engaging introduction to Continuum Mechanics in Biosciences This book presents the elements of Continuum Mechanics to people interested in applications to biological systems. It is divided into two parts, the first of which introduces the basic concepts within a strictly one-dimensional spatial context. This policy has been adopted so as to allow the newcomer to Continuum Mechanics to appreciate how the theory can be applied to important issues in Biomechanics from the very beginning. These include mechanical and thermodynamical balance, materials with fading memory and chemically reacting mixtures. In the second part of the book, the fully fledged three-dimensional theory is presented and applied to hyperelasticity of soft tissue, and to theories of remodeling, aging and growth. The book closes with a chapter devoted to Finite Element analysis. These and other topics are illustrated with case studies motivated by biomedical applications, such as vibration of air in the air canal, hyperthermia treatment of tumours, striated muscle memory, biphasic model of cartilage and adaptive elasticity of bone. The book offers a challenging and appealing introduction to Continuum Mechanics for students and researchers of biomechanics, and other engineering and scientific disciplines. Key features: Explains continuum mechanics using examples from biomechanics for a uniquely accessible introduction to the topic Moves from foundation topics, such as kinematics and balance laws, to more advanced areas such as theories of growth and the finite element method.. Transition from a one-dimensional approach to the general theory gives the book broad coverage, providing a clear introduction for beginners new to the topic, as well as an excellent foundation for those considering moving to more advanced application
With its origins in the theories of continuous distributions of dislocations and ofmetalplasticity,inhomogeneitytheoryisarichandvibrant?eldofresearch. The recognition of the important role played by con?gurational or material forces in phenomena such as growth and remodelling is perhaps its greatest present-day impetus. While some excellent comprehensive works approa- ing the subject from di?erent angles have been published, the objective of this monograph is to present a point of view that emphasizes the di?erenti- geometric aspects of inhomogeneity theory. In so doing, we follow the general lines of thought that we have propounded in many publications and presen- tions over the last two decades. Although based on these sources, this book is a stand-alone entity and contains some new results and perspectives. At the same time, it does not intend to present either a historical account of the - velopment of the subject or a comprehensive picture of the various schools of thought that can be encountered by perusing scholarly journals and attending specialized symposia. The book is divided into three parts, the ?rst of which is entirely devoted to the formulation of the theory in the absence of evolution. In other words, time is conspicuously absent from Part I. It opens with the geometric ch- acterization of material inhomogeneity within the context of simple bodies in Chapter 1, followed by extensions to second-grade and Cosserat media in Chapters 2 and 3.
This contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include:Global stress and hyper-stress theoriesApplications of de Rham currents to singular dislocationsManifolds of mappings for continuum mechanicsKinematics of defects in solid crystalsGeometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.