Iqbal Ahmad

  • This book provides a survey of recent advances in the development of antibiofilm agents for clinical and environmental applications. The fact that microbes exist in structured communities called biofilms has slowly become accepted within the medical community. We now know that over 80% of all infectious diseases are biofilm-related; however, significant challenges still lie in our ability to diagnose and treat these extremely recalcitrant infections.Written by experts from around the globe, this book offers a valuable resource for medical professionals seeking to treat biofilm-related disease, academic and industry researchers interested in drug discovery and instructors who teach courses on microbial pathogenesis and medical microbiology.

  • This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.

  • Fungi are eukaryotic microorganisms that are closely related to humans at cellular level. Human fungal pathogens belong to various classes of fungi, mainly zygo- cetes, ascomycetes, basidiomycetes, and deuteromycetes. In recent years, fungal infections have dramatically increased as a result of improved diagnosis, high frequency of catheterization, instrumentation, etc. However, the main cause remains the increasing number of immunosuppressed patients, mostly because of HIV infection and indiscriminate usage of antineoplastic and immunosuppressive agents, broad-spectrum antibiotics and prosthetic devices, and grafts in clinical settings. Presently available means of combating fungal infections are still weak and clumsy compared to control of bacterial infection. The present scenario of antifungal therapy is still based on two classes of antifungal drugs (polyenes and azoles). These drugs are effective in many cases, but display toxicity and limited spectrum of ef?cacy. The recent trend towards emergence of drug-resistant isolates in the clinic is an additional problem. In recent years, a few new antifungal drugs have entered the clinics, but they are expected to undergo same fate as the older antifungal drugs. The application of fungal genomics offers an unparalleled opportunity to develop novel antifungal drugs. However, it is too early to expect any novel drugs, as the antifungal drug discovery program is in the stage of infancy. Interestingly, several novel antifungal drug targets have been identi?ed and validated.

  • Globally stone fruits are emerging in the market due to the increased consumer's desire for health-promoting foods. Stone fruits attract research attention, mainly due to the cultural and commercial aspects of the array of varieties that are grown. Being grown in wide range of environments, it is very important to understand what factors influence the production and quality attributes of stone fruits. There is a lack of systematic scientific information on strategic approach for production technologies of such fruits. This book will be first of its kind focusing on technological aspects of stone fruits especially on latest developments in present day horticulture. It will be an essential reference for professionals including academicians, scholars, researchers and industries working in the said area. We hope that readers will find this book a useful resource for their research or studies, and it will be helpful in the development of high quality stone fruits in future which will improve the economic and social life of people. Besides, this book fulfills the needs of a number of horticultural courses of Universities and will serving as a pomological manual for all occasions.

  • This book compiles the latest information in the field of antibacterial discovery, especially with regard to the looming threat of multi-drug resistance. The respective chapters highlight the discovery of new antibacterial and anti-infective compounds derived from microbes, plants, and other natural sources. The potential applications of nanotechnology to the fields of antibacterial discovery and drug delivery are also discussed, and one section of the book is dedicated to the use of computational tools and metagenomics in antibiotic drug discovery. Techniques for efficient drug delivery are also covered. The book provides a comprehensive overview of the progress made in both antibacterial discovery and delivery, making it a valuable resource for academic researchers, as well as those working in the pharmaceutical industry.
    />

  • Development of superior crops that have consistent performance in quality and in quantity has not received the same emphasis in the field of genetics and breeding as merited. Specialty trait requires special focus to propagate. Yet basic germplasm and breeding methodologies optimized to improve crops are often applied in the development of improved specialty types. However, because of the standards required for specialty traits, methods of development and improvement are usually more complex than those for common commodity crops. The same standards of performance are desired, but the genetics of the specialty traits often impose breeding criteria distinct from those of non-specialty possessing crops. Specifically, quality improvement programs have unique characteristics that require careful handling and monitoring during their development for specific needs. Adding value either via alternative products from the large volumes of grain produced or development of specialty types is of interest to producers and processors.  This work assimilates the most topical results about quality improvement with contemporary plant breeding approaches.The objective of this book is to provide a summary of the germplasm, methods of development, and specific problems involved for quality breeding. In total, fourteen chapters, written by leading scientists involved in crop improvement research, provide comprehensive coverage of the major factors impacting specialty crop improvement.

  • Biofilms are predominant mode of life for microbes under natural conditions. The three-dimensional structure of the biofilm provides enhanced protection from physical, chemical and biological stress conditions to associated microbial communities. These complex and highly structured microbial communities play a vital role in maintaining the health of plants, soils and waters.  Biofilm associated with plants may be pathogenic or beneficial based on the nature of their interactions. Pathogenic or undesirable biofilm requires control in many situations, including soil, plants, food and water. Written by leading experts from around the world, Biofilms in Plant and Soil Health provides an up-to-date review on various aspects of microbial biofilms, and suggests future and emerging trends in biofilms in plant and soil health.
    Issues are addressed in four sub areas: 
    I) The fundamentals and significance of biofilm in plant and soil health, and the concept of mono and  mixed biofilms by PGPR and fungal  biofilms. 
    II) Biochemical and molecular mechanisms in biofilm studies in plant associated bacteria, and techniques in studying biofilms and their characterization, gene expression and enhanced antimicrobial resistance in biofilms, as well as biotic and biotic factors affecting biofilm in vitro. 
    III) The ecological significance of soil associated biofilms and stress management and bioremediation of contaminated soils and degraded ecosystems. 
    IV) Pathogenic biofilm associated with plant and food and its control measures. This book is recommended for students and researchers working in agricultural and environmental microbiology, biotechnology, soil sciences, soil and plant health and plant protection. Researchers working in the area of quorum sensing, biofilm applications, and understanding microbiome of soil and plants will also find it useful.  

  • This timely and original handbook paves the way to success in plant-based drug development, systematically addressing the issues facing a pharmaceutical scientist who wants to turn a plant compound into a safe and effective drug. Plant pharmacologists from around the world demonstrate the potentials and pitfalls involved, with many of the studies and experiments reported here published for the first time. The result is a valuable source of information unavailable elsewhere.

  • This book focuses on successful application of microbial biotechnology in areas such as medicine, agriculture, environment and human health.

  • Here, an extremely experienced team of authors from five different continents provides a timely review of progress in the use and exploitation of soil bacteria to improve crop and plant growth. They present novel ideas on how to grow better, more successful crops, in an environmentally sound way, making this invaluable reading for those working in the pharmaceutical, biotechnological and agricultural industries.

  • Combating bacterial infections calls for a multidisciplinary approach and this is what is on offer here. Written by an experienced international team of researchers from various fields ranging from biotechnology to traditional medicine, the book provides complete and comprehensive coverage of topics relevant to new antibacterial drugs.
    This ready reference and handbook adopts a novel approach, focusing on combating multi-drug resistance in bacteria by developing antibacterials with new target sites, using new advances in drug discovery as well as natural products.
    Divided into three sections, the first describes the problem of drug resistance and the need for new drugs, while the second treats recent trends and new classes of drugs, including relevant developments in transcriptomics and proteomics leading to new antimicrobial drug discovery, and a new generation of antibiotics and non-antibiotics. The third section on natural products discusses the antibacterial action of phytocompounds, plant extracts, essential oils and honey as well as the role of probiotics in bacterial infections.
    Invaluable to students of medicine, pharmaceutical sciences, phytomedicine and microbiology and all those wanting to know about the possibilities and limitations of new antibacterial drugs. Furthermore, its coverage of plants and other natural products makes this relevant to the pharmaceutical and herbal industries.

empty