Hebertt Sira-Ramirez

  • This monograph presents a novel method of sliding mode control for switch-regulated nonlinear systems. The Delta Sigma modulation approach allows one to implement a continuous control scheme using one or multiple, independent switches, thus effectively merging the available linear and nonlinear controller design techniques with sliding mode control. Sliding Mode Control: The Delta-Sigma Modulation Approach, combines rigorous mathematical derivation of the unique features of Sliding Mode Control and Delta-Sigma modulation with numerous illustrative examples from diverse areas of engineering. In addition, engineering case studies demonstrate the applicability of the technique and the ease with which one can implement the exposed results. This book will appeal to researchers in control engineering and can be used as graduate-level textbook for a first course on sliding mode control.

  • Power electronics systems are physical devices that can be modelled mathematically as controlled dynamical systems. This makes them suitable for the application of existing control theory, particularly in the design of their regulatory subsystems. For years there has been a perceived need to bring the disciplines of power electronics and theoretical control into closer co-operation, demonstrating the potentially great advantages of, at first sight, rather obscure control theory to power specialists while making control technicians better aware of the fundamental needs and limitations of power electronics design.
    Control Design Techniques in Power Electronics Devices deals specifically with control theories relevant to the design of control units for switched power electronics devices, for the most part represented by DC-DC converters and supplies, by rectifiers of different kinds and by inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by multiple case studies and examples showing their application in the emerging field of power electronics. The book is introduced through the very important topic of modeling switched power electronics as controlled dynamical systems. Detailed circuit layouts, schematics and actual closed-loop control responses from a representative group of the plants under discussion and generated by applying the theory are included.
    The control theories which feature in the book are: sliding mode control and feedback control by means of approximate linearization (linear state feedback, static and dynamic proportional-integral-differential (PID control), output feedback trough observer design, Lyapunov-based control and passivity-based control). Nonlinear control design methods represented include: exact feedback linearization, input-output linearization, differential flatness, generalized PID control and, again, passivity-based control.
    This monograph will be of interest to researchers in power systems and their related control problems. It will also assist tutors and students in these fields with its dydactic style and its rich source of worked-out application examples from a broad spectrum of control theories.

  • Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology.  Key features: Presents a radically new approach to online parameter and state estimation. Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. Includes examples in a variety of physical applications with experimental results. Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.

empty